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1 Introduction

In this exposition, we explain universes in category theory, introduced by A. Grothendieck
in SGA4. In section 2, we recall the axioms of ZFC, the Zermelo-Fraenkel set theory
with the axiom of choice. In section 3, we introduce the axioms of universes from M.
Kashiwara and P. Schapira and discuss their basic properties from the exposition of
SGA4. We have the other systems of axioms of universes; Grothendieck’s original one and
universes of N. Bourbaki and S. MacLane. In section 4, we compare their systems of
axioms. We conclude that they give the same systems of axioms of universes, and thus we
obtain the same universes. In section 5, we explain the notions of U-categories and U
-small categories, and we show that the functor category Fct(C,D) is also U-small if two

categories C and D are U-small.

2 The Zermelo-Fraenkel Axiomatic Set Theory with the Axiom of Choice

We recall the axioms of the Zermelo-Fraenkel set theory and the axiom of choice. We
refer to [Cie97], [Jec03], and [Kun80] for details.
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1. Axiom of Extensionality
If X and Y have the same elements, then X =Y":
Vu(ue X < uey) - X =Y.

2. Axiom Schema of Separation
Let © (U, P) be a formula. For any X and P, there exists a set Y = {u cX ] go(u, p)}:
VXVpIYVulueY < ue X Ap(u,p)].

By the axiom of extensionality, the set Y is unique.

3. Axiom of Pairing
For any ¢ and p, there exists a set ¢ that contains ¢ and p :
VaVb3eVe(x=aVae=b — x €c).
By the axiom schema of separation, we define the set {a, b} as
{a,b} = {ze€clz=aVva=>b}.
By the axiom of extensionality, the set {a, b} is unique. Then the set {a, b} is called the
pair of ¢ and b. Note that {a, b} = {b, a}. The singleton {a} is the set {a, a}.

4. Axiom of Empty Set
There exists the empty set:
JxVy-(y € x).
By the axiom of extensionality, the set z is unique. Then we define the symbol () as
Va=(a€).
The set () is called the empty set.

5. Axiom of Union
For every family JF, there exists a set U containing the union of all elements of F :
VFIUVz[Y (Y e FAzeY) 5 xeU].
A set of sets is often called a family or a collection of sets. By the axiom schema of
separation, for a family F of sets, we define the set UF as
UF ={zeU|FY(YeFAzeY)}
By the axiom of extensionality, the set UJF is unique. The set UF is called the union of
F. We further define X UY := U{X, Y}, the union of X and Y.
If {X;|i€ I} is a family of sets with the index set I, then the union U{X;|i € I}
is denoted by U;c 1 X .
For a family F of sets, we define the set NJF as
NF={zecUF|VYY(YeFAzeY)}.
The set NF is called the intersection of . We further define X NY := N{X,Y},
the intersection of X and Y. If {XPZ ’z c I} is a family of sets with the index set I,
then the intersection N{X; | i € I} is denoted by N;erX; .
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6. Axiom of Power Set
For every set X, there exists a set P containing the set of all subsets of X:
VX3IPVu(uC X — ueP).
We define the symbol C as
XCY & Vu(ueX - ueY).
Then we say that X is contained in Y, and X is called a subset of Y.
By the axiom schema of separation, we define the set P(X) as
P(X)={zePlzC X}
By the axiom of extensionality, the set P(X) is unique. The set P(X) is called the
power set of X.
For every x € X and ¥ € Y, we define an ordered pair (x, y) as
(,y) = {{z},{z,y}} € P(P(XUY)).
Then we further define a Cartesian product X X Y as
XxY ={zePP(XUY))|3zeXIyeY (2= (x,y)) }

7. Axiom of Infinity (Zermelo 1908)
There exists an infinite set:
W [Ve(z=0 - zex) AVyeaVz(z=yU{y} - z€x)].
We say that y is a successor of x and write Yy = S(zx) if S(z) = x U {z}.

8. Axiom Schema of Replacement (Fraenkel 1922; Skolem 1922)
For every formula © (s, t, U, w) with free variables s, t, U, and w, every set A, and
every parameter P, if © (s, t, A, D) defines a function I on A by
Fr) =y < ¢(z,y,A p),
then there exists a set Y containing the range F[A] = {F(x)|x € A} of the function F':
VAVp[Vz € Adlyp(x,y,A,p) — FY Ve € ATy € Y o(x,y, A,p)],
where the quantifier 3!x QD(CC) is equivalent to the formula
Jrp(x) A Vo Vyle(@) A ely) = =yl

A subset R of a Cartesian product X XY is called a relation between X and Y. We
usually write aRb instead of (a, b) € R..

A domain dom(R) of a relation is defined as the set of all x such that (x, y) € R for
some iy € Y. A range range(R) of a relation is defined as the set of all ¥ such that (x, y)€
R for some x € X.

A relation R C X X X is an equivalence relation on X if it is reflexive, symmetric
and transitive. The family of all equivalence classes with respect to an equivalence relation
R on a set X is called the quotient set of X with respect to R and denoted by X/R.
Equivalence relations are often denoted by symbol =, and then the quotient set is denoted by

X/ =.
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A relation R C X X Y is called a function if
Vo € X,Vy1 €Y, Vy2 €Y (zRy1 A xRys — y1 = y2).

For a function f, if dom(f) = X and range(f) C Y, then [ is called a function (or map)
from X into Y and it is denoted by f : X — Y. The set of all functions from X into Y’
is denoted by Y.
If moreover range(f) = Y, then [ is said to be a function from X onto Y, or a surjective
function. A function f: X — Y is a one-to-one (or injective) function if
f@)=fly) = x=y
for all z, y € X . A function f : X — Y is a bijection, or a bijective function if it is

one-to-one and onto Y.

9. Axiom of Regularity (Skolem 1922; von Neumann 1925)
Every nonempty set has an €-minimal element:

Ve[Jy(yex) - Jy(ycax A -Fz(zex Azey))]

10. Axiom of Choice (Levi 1902; Zermelo 1904)
For every family F of disjoint nonempty sets, there exists a set .S that intersects every
x € F in precisely one point:
VFEIVe e Flx #0) AV e FYye F(z=y V zNy=10)]
— ASVr e FIz(z€ S N z€ex).
The system of axioms 0-9 is usually called Zermelo-Fraenkel set theory and is
abbreviated by ZF. The system of axioms 0-10 is usually denoted by ZFC. Thus, ZFC is

the same as ZF+AC, where AC stands for the axiom of choice.

3 Universes

We are assuming the Zermelo-Fraenkel set theory and the axiom of choice for set theory.
In this section, we recall the axioms of universes from M. Kashiwara and P. Schapira

[KS06] and thier basic properties from SGA 4 [AGV72].

Definition 3.1. A set U is a universe if the following axioms are satisfied:

(I) if z € U, then x C U;
II) if x € U, then {2} € U;
11

(@V) if ] € Uandx; € U for all 4 € I, then Ujejx; € U;
(V) NeU. ]

We denote the least nonzero limit ordinal w (or N). The ordinals less than w (elements

)
)
) if x € U, then P(z) € U;
)
)

of N) are called finite ordinals, or natural numbers. Thus
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N=w=1{012,...}

is the set of all finite ordinals.

We call the above universe the universe of Kashiwara and Schapira (or a Kashiwara-
Schapira universe).
Proposition 3.2. Let U be a set satistying the axioms: (1) and (11). If x € U and if y C
x, then y € U.
Proof. P(x) C U by the axioms (III) and (I). Since y € P(x), we obtainy € U. ]
Corollary 3.3. Let U be a nonempty set satistying the axioms: (1) and (I111). Then we have
0eU.
Proof. A set U is nonempty, and ) C 2 for any set 2z € U. Hence we have ) € U by
Proposition 3.2. ]
Proposition 3.4. Let U be a set satistying the all the axioms above: (1), (II), (III), (IV) and
(V).If x € Uand y € U, then {z, y} € U.
Proof. Put x, =z and 2, = y. We have {z,} € U and {z,} € U by the axiom (II).
Since N € U by the axiom (V), {1,2} € U by Proposition 3.2. Hence we obtain {z, y} =

{z,} U{z,} € U by the axiom (IV). H
Proposition 3.5. Let U be a set satistying the axiom (1). If {z, y} € U, then x € U and
y € U.

Proof. We have {z, y} C U by the axiom (I). Hence we obtain € U and ¥ € U. ]
Proposition 3.6. Let U be a set satisfving all the axioms above: (1), (II), (I11), (IV) and (V).
If x € Uand y € U, then (x, y) € U.

Proof. We have {z} € U and {z, y} € U by the axiom (II) and Proposition 3.4. Hence

we obtain (z, y) € U by Proposition 3.4 again. []
Proposition 3.7. Let U be a set satistying the axiom (1). If (x, y) € U, then x € U and
Y e U.

Proof. By definition, (z, y) = {z}, {z, y}} . Hence this follows from Proposition 3.5. L]
Corollary 3.8. Let U be a set satistying all the axioms above: (I), (1), (IIT), AV) and (V).

Ifr; € Uforeach1=1,2,...,n,then (1, Ty, ..., Tn) € U.
Proof. By definition, (21, s, . . ., Tn) = (X1, Toy - .., Tn_1), Tpn ). Hence we obtain ( x,
Loy -+, Ty ) € U inductively. (]

Proposition 3.9. Let U be a set satisfying the axioms: (1) and (I11). If x € U and y is a
quotient set of x by some equivalence relation, then y € U.

Proof. Since the quotient set 7 is a set of the equivalence classes and the equivalence
classes are subsets of z, g is a subset of P(ac) Hence we obtain ¢y € U by the axiom (III)
and Proposition 3.2. L]
Proposition 3.10. Let U be a set satistving the axioms: (Il) and IV). [f X € U,Y C U,
and [+ X — Y is a surjective function, then Y € .

Proof. Since f(z) € Y, we have f(x) € U, and {f(z)} € U for all z € X by the
axiom (II). Hence we obtain YV = U:peX{f(x)} € U by the axiom (IV). []
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Corollary 3.11. Let U be a set satistving the axioms: (1) and AV). If I € U and x; € U
for all © € 1, then {$1|l c I} € U.
Proof. Since I € U and «; € U for all @ € I, we have {zi|i € I} C U. The function
f:I —{xz;|i €I} defined by f(i) = ; is surjective. Hence we obtain {x; |1 € I} €
U by Proposition 3.10. L]
Proposition 3.12. Let U be a set satistving the axioms: (1), (111), and AV). If I € U and
x; € Uforall i € I, then Nicrx; € U.
Proof. Since Mic1®; C Uic1%i, we have MNic1i € U by the axiom (IV) and Proposition
3.2. L]
Proposition 3.13. Let U be a set satistying all the axioms above: (1), (II), (IIT), IV) and
WN.IfX€UandY € U, then X XY € U.
Proof. 1t © € X and y € Y , then we have € U and ¥ € U by the axiom (I), and {(z,
y)} € U by Proposition 3.6 and the axiom (II). Since {} x Y = Uyey {(z, y)} , We see
that {:C} X Y € U from the axiom (IV). Moreover, since X X Y = Uzex ({2} X Y),
we obtain X X Y € U by the axiom (IV) again. []
Corollary 3.14. Let U be a set satistying all the axioms above: (1), (II), (III), (IV) and (V).
Then we have 7. € U.
Proof. By definition, we have
Z = (NxN)/ =,
where = is the equivalence relation on N X N defined by
(m,n) = (m',n') <= m+n =m' +n.

Since N X N € U by the axiom (V) and Proposition 3.13, it follows from Proposition 3.9
that Z € U. 0

If {xi|i € I} is a family of sets with the index set 7, then the disjoint union of the
family {m’l ‘ 1€ [}, denoted by |—|iel i, is defined as the union of the family of sets

{z; x {i} |i € I}:

| |z = @i x {i}).

iel el
Corollary 3.15. Let U be a set satistying all the axioms above: (1), (IT), (III), (IV) and (V).
If I € Uand x; € U for all i € I, then | lic;vi € U.
Proof. For any i € I, we have {3} € P(I). Then we obtain {;} € U, since P(I) C U
by the axioms (III) and (I). Hence we have |_|Z'€1 Z; € U by Proposition 3.13 and the axiom
(IV). ]
Proposition 3.16. Let U be a set satistving the axioms: (I), (I1), III) and (IV). If X € U,
Y € U, and R is a relation between X and Y, then R € U. In particular, any function
from X into Y is an element of U.
Proof. We have R € U by Proposition 3.13 and Proposition 3.2. []
Proposition 3.17. Let U be a set satistying the axioms: (1), (II), (III) and (IV). If X € U
and Y €U, then the set of all relations between X and Y is an element of U . In particular,

yX emu.
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Proof. Let Z be the set of all relations between X and Y. Then Z is a subset of P (X X
Y ) X {X} X {Y} We have P(X XY ) X {X} X {Y} € U by Proposition 3.13 and
the axioms (II) and (III). Hence we obtain Z € U by Proposition 3.2. ]
If {x; | i € I} is a family of sets with the index set I, then the Cartesian product of the
family {l’l ’ 1€ I}, denoted by Hz‘e] x; , is defined as follows:
Hmi = {f € (Uerz; ) | f(i) € a; for each i € T'}.
el
Note that the Cartesian product is a subset of (Uie[l‘i )I.
Corollary 3.18. Let U be a set satistying the axioms: (I), (II), (III) and (IV). If I € U and
x; € U for all 1 € [, then Hz‘e] x; € U.
Proof. It follows from the definition that Hz‘el x; C ( Userx; )I. Since Uijc1x; € U by the
axiom (IV), we have (Uie[l‘i )I € U by Proposition 3.17. Hence we obtain Hie] r; €U
by Proposition 3.2. ]
For a set X, the cardinality of X is denoted by |X| .
Theorem 3.19. Let X and Y be any sets. Then the following conditions are equivalent:
LIX| =Y
2. there exists an injective function ¥ : X — Y.

’

Moreover, if X # (), then these conditions are equivalent to the condition that

3. there exists a surjective function VY — X.
Proof. For example, see [Cie97, Theorem 5.1.2]. L]
Proposition 3.20. Let U be a set satistving the axioms: (II) and (IV). If X C U and | X]|
< |Y| for some Y € U, then X € U.
Proof. We may assume that X =+ (). It follows from Theorem 3.19 that there exists a
surjective map ¥ : Y — X. Hence we obtain X € U by Proposition 3.10. L]
Proposition 3.21. Let U be a set satistying the axioms: (1) and (I11). If x € U, then ’;E|
S |U|. In particular, U & U.
Proof. We have |z| = |U| from the axiom (I). Suppose that || = |U|. Then we obtain |U|
< |P(z)|, because |x| < |P(x)| by Cantor’s theorem (see [Cie97, Theorem 5.1.6]). On
the other hand, we have P(x) C U by the axioms (I) and (II). Hence |P(x)| = |U|. This

is a contradiction. ]

Proposition 3.22. If ([U )\) \EA Is a nonempty family of universes, then m AEA U, is a universe.
Proof. This follows from the definition. L]

4 Comparison of Axioms of Universes

We have the other axioms of universes of A. Grothendieck [Gab62], N. Bourbaki [AGV72],
and S. MacLane [Mac88].

Definition 4.1. A set U is a universe of Grothendieck (or a Grothendieck universe) if
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the following axioms are satisfied:

Gl)yif x € U, thenz C U;

if z € U, then{z} € U;

if € U, then P(x) € U;

if ] € Uandx; € U for all 7 € I, then Uicrx; € U ;
(x,y) €EUifandonlyif x € Uand ¥y € U;

(
(G.
(
(
(
(G6)Z € U. O

2)
G.3)
G.4)
G.5)
G.6)
Definition 4.2. A set U is a universe of Bourbaki (or a Bourbaki universe) if the following
axioms are satisfied:

B.l)if x € U, thenz C U;

2)if £ € Uandy € U, then {z, y} € U;

)if x € U, then P(z) € U;
)
)

if ] € Uandx; € Uforallt € I, then Uiejx; € U

(
(B.
(
(
B5 U +0. [

B.3
B4
B.5

Definition 4.3. A set U is a universe of MacLane (or a MacLane universe) if the following
axioms are satisfied:

M.1)if z € U, thenx C U;

2)ifx € Uand y € U, then {z, y} € U;

Jif £ € U and y € U, then (z, y) € U;

Jifz € Uandy € U, thenx X y € U;

Vif ¢ € U,thenp(x)e U;

)if x € U, then Uz € U ;

ywe U;

)

(
M
(
(
(
(
(
( ifreU,yCUand f:2— 1y is a surjective function, then ¢y € U. L]

M.3
M.4
M.5
M.6
M.7
M.8

Note that

* () =(G.1) = (B.1) = (M.1);
(ID) = (G.2);
(ITT) = (G.3) = (B.3) = (M.5);
o (IV) = (G.4) = (B.4);
(V) = (M.7);
(B.2) = (M.2).

4.1 Comparison of universes of Kashiwara-Schapira and of Grothendieck

Proposition 4.4. Kashiwara-Schapira universes satisfy the axiom (G.5).

Proof. This follows from Propsitions 3.6 and 3.7. L]
Proposition 4.5. Kashiwara-Schapira universes satisfy the axiom (G.6).
Proof. This follows from Corollary 3.14. ]
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Proposition 4.6. Grothendieck universes satisty the axiom (V).
Proof. Let U be a Grothendieck universe. By Proposition 3.2, we have N € U, since N

C Z and Z € U by the axiom (G.6). []
Theorem 4.7. The universe of Kashiwara-Schapira is the same as the universe of
Grothendieck. L]

4.2 Comparison of universes of Kashiwara-Schapira and of Bourbaki

Proposition 4.8. Kashiwara-Schapira universes satisty the axiom (B.2).

Proof. This follows from Propsition 3.4. L]
Proposition 4.9. Kashiwara-Schapira universes satisty the axiom (B.5).
Proof. This follows from the axiom (V). []

Proposition 4.10. Bourbaki universes satisty the axiom (II).
Proof. This follows from the definition of singletons and the axiom (B.2). ]
Proposition 4.11. Bourbaki universes satisfy the axiom (V).
Proof. Let U be a Bourbaki universe. By Corollary 3.3, we have () € U. Then we obtain

N € U by Proposition 4.10 and the axiom (B.2). []
Theorem 4.12. The universe of Kashiwara-Schapira is the same as the universe of
Bourbaki. L]

4.3 Comparison of universes of Kashiwara-Schapira and of MacLane

Proposition 4.13. Kashiwara-Schapira universes satisfy the axiom (M.2).

Proof. This follows from Propsition 4.8. ]
Proposition 4.14. Kashiwara-Schapira universes satisty the axiom (M.3).
Proof. This follows from Propsition 3.13. []
Proposition 4.15. Kashiwara-Schapira universes satisfy the axiom (M.4).
Proof. This follows from Propsition 3.6. ]

Proposition 4.16. Kashiwara-Schapira universes satisty the axiom (M.6).

Proof. Let U be a Kashiwara-Shapira universe. If x € U, we have y € U for every y €

x by the axiom (I). Then we obtain Uz = Uyc,yy € U by the axiom (IV). L]
Proposition 4.17. Kashiwara-Schapira universes satisty the axiom (M.8).
Proof. This follows from Propsition 3.10. ]

Proposition 4.18. MaclLane universes satisty the axiom (II).
Proof. This follows from the definition of singletons and the axiom (M.2). []
Proposition 4.19. Macl.ane universes satisty the axiom (IV).
Proof. Let U be a MacLane universe. If I € U and w; € U forall i € I, then {z; |i € I}
C U. We have a surjective function f: T — {z;|i € I} defined by f(i) = x; . Hence we
obtain {z;|i € I} € U by the axiom (M.8). Therefore U;jcjz; = U{xi|i € I} = Ug €

U. ]
Theorem 4.20. 7The universe of Kashiwara-Schapira is the same as the universe of
Macl ane. 0]
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5 Categories and Functors in Universes

In this section, we introduce basic notions of categories and functors in universes to fix
some notations needed for the paper [OT14]|. We refer to [Mac88], [Sch72], [KS06], and
[Yek20] for details.

In this section, we assume that U is a (fixed) universe. The notions of categories and

functors are defined in [OT14, Section 2 ].

5.1 U-categories
A set is called a U-small (or small) set if it is an element of U. Thus the universe U is
the set of all U-small sets, but U itself is not a U-small set by Proposition 3.21.

We define a U-class (or a class) C to be any subset C of the universe U. It follows from
the axiom (I) that every U-small set is also a U-class. A U-class C is called a proper class
if it is not a U-small set. In particular, the universe U itself is a proper class.

A category C is called a U-category if the set Ob(C) of objects is a U-class and the set
Homg¢ (X, Y) of morphisms is a U-small set for any X, Y € Ob(C). A U-category C
is said to be a U-small category if Ob(C) is a U-small set.

We denote the category of U-small sets and maps by U-Set. U-Set is a U-category,
since Ob(U-Set) = U and Homy-Set (X, Y) € U for any X, Y € U by Propositions 3.17
and 3.2.

5.2 Functor categories
For a category C, we denote the set of morphisms of C by MOI“(C) :

Mor(C) = U Home (X, Y).

(X,Y)€0b(C)x Ob(C)
Furthermore, we denote the set of identity morphisms of C by l—Mor(C) . Then we have
the isomorphism
Ob(C) — 1-Mor(C), X + idy.

Lemma 5.1. 7 C is a U-small category, then Mor(C) js a U-small set. In particular,
1-Mor(C) is a U-small set.
Proof. The index set Ob(C ) X Ob(C ) is a U -small set by Proposition 3.13. Then
Mor(C) is a U-small set by the axiom (IV). []
Lemma 5.2. If C is a U-small category, then

H Home (X, Y)
(X,Y)eOb(C)xOb(C)

is a U-small set.
Proof. The index set Ob(C)XOb(C) is a U-small set by Proposition 3.13. Then we see
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that H(X Y)€0b(C)xOb(C) Home (X, Y) is a U-small set by Corollary 3.18. L]
Consider a family {Ci}iel of categories indexed by a set J. Then we define the product
category [ [, ; C; by setting:

Ob (H@) = [T on),

i€l i€l
Homyy _ ¢, ({Xitier, {Yitier) = [ [ Home, (X;, V7).
el
For two categories C, D, the product category of C and D is denoted by C X D.
Proposition 5.3. 7f C and D are U-small categories, then the product category C XD is
a U-small category.
Proof. The set of objects Ob(C XD ) = Ob(C)X Ob(D) and the set of morphisms
Homeyp ((X1,Y1), (X2,Y2)) = Home (X1, X2) x Homp(Y7, Y2)
are U-small sets by Proposition 3.13. L]
Proposition 5.4. If C is a U-small category and D is a U -category, then the functor category
Fet(C,D) is a U-category. Moreover, if D is a U-small category, then Fct(C,D) is a
U-small category.
Proof. If C is the empty category, then Fct(C,D) has exactly one element, (that is, the
empty functor) and its identity morphism. If D is the empty category but C is not empty,
then Fet(C,D) is empty.
Now we assume that C and D are not empty. Let ', G : C — D be functors. The set of
morphisms from F' to G, Homp(c,py (F', G), is a subset of
Mor(F(C)) x Mor(G(C)) x H Homyp (F(X),G(X)),
XeOb(C)
where we put
Mor(F(C)) = U Homyp (F(X), F(Y))
(X,Y)eOb(C)xOb(C)
and
Mor(G(C)) = U Homp(G(X), G(Y)).
(X,Y)eOb(C)xOb(C)
If C is a U-small category and D is a U-category, then Mor(F(C)), Mor(G(C)), and
[[ Homo(F(X),G(X))
X€0b(C)
are U-small sets by the axiom (IV) and Corollary 3.18. Hence we see that Hocht(C,D) F, Q)
is also a U-small set by Propositions 3.13 and 3.2. Therefore Fct(C,D) is a U-category.
Moreover, we assume that D is a U-small category. Then Ob(Fct(C,D)) is a U-small
set by Lemma 5.1, Lemma 5.2, and Propositions 3.17 and 3.2, since
Ob(Fct(C,D)) C Homy.get(Mor(C), Mor(D)).
Therefore Fet(C,D) is a U-small category. []
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